224,666 research outputs found

    Is Cabibbo-Kobayasi-Maskawa Matrix Unitary?

    Get PDF
    First, we give summary of the present values of CKM matrix elements. Then, we discuss whether CKM matrix is unitary or not, and how we can find out if it is not unitary.Comment: 8 pages, 1 figur

    Pion properties at finite density

    Full text link
    In this talk, we report our recent work on the pion weak decay constant (F_pi) and pion mass (m_pi) using the nonlocal chiral quark model with the finite quark-number chemical potential (mu) taken into account. Considering the breakdown of Lorentz invariance at finite density, the time and space components are computed separately, and the corresponding results turn out to be: F^t_pi = 82.96 MeV and F^s_pi = 80.29 MeV at mu_c ~ 320 MeV, respectively. Using the in-medium Gell-Mann Oakes-Renner (GOR) relation, we show that the pion mass increases by about 15% at mu_c.Comment: 5 pages, 2 figures, Talk given at the 4th Asia-Pacific Conference on Few-Body Problems in Physics 2008 (APFB08), 19 ~ 23 Aug 2008, Depok, Indonesi

    Axial Anomaly and the Nucleon Spin

    Get PDF
    In this letter, we have taken a particular Lagrangian, which was introduced to resolve U(1) problem, as an effective QCD Lagrangian, and have derived a formula of the quark content of the nucleon spin. The difference between quark content of the proton (\Delta\Sigma_p) and that of the neutron (\Delta\Sigma_n) is evaluated by this formula. Neglecting the higher-order isospin corrections, this formula can reduce to Efremov's results in the large N_c limit.Comment: (1) A few changes and corrections made following Referee. (2) The difference between quark content of the proton (\Delta\Sigma_p) and that of the neutron (\Delta\Sigma_n) is evaluated. Neglecting the higher-order isospin corrections, this formula can reduce to Efremov's results in the large N_c limi

    Pentaquark Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei

    Full text link
    We study the properties of the Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei within the quark mean-field (QMF) model, which has been successfully used for the description of ordinary nuclei and Λ\Lambda hypernuclei. With the assumption that the non-strange mesons couple only to the uu and dd quarks inside baryons, a sizable attractive potential of the Θ+\Theta^+ in nuclear matter is achieved as a consequence of the cancellation between the attractive scalar potential and the repulsive vector potential. We investigate the Θ+\Theta^+ single-particle energies in light, medium, and heavy nuclei. More bound states are obtained in Θ+\Theta^+ hypernuclei in comparison with those in Λ\Lambda hypernuclei.Comment: 16 pages, 5 figure
    • …
    corecore